Fast and Accurate Computation of Time-domain Acoustic Scattering Problems with Exact

نویسندگان

  • LI-LIAN WANG
  • BO WANG
  • XIAODAN ZHAO
چکیده

This paper is concerned with fast and accurate computation of exterior wave equations truncated via exact circular or spherical nonreflecting boundary conditions (NRBCs, known to be nonlocal in both time and space). We first derive analytic expressions for the underlying convolution kernels, which allow for a rapid and accurate evaluation of the convolution with O(Nt) operations over Nt successive time steps. To handle the nonlocality in space, we introduce the notion of boundary perturbation, which enables us to handle general bounded scatters by solving a sequence of wave equations in a regular domain. We propose an efficient spectral-Galerkin solver with Newmark’s time integration for the truncated wave equation in the regular domain. We also provide ample numerical results to show high-order accuracy of NRBCs and efficiency of the proposed scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and Accurate Computation of Time-Domain Acoustic Scattering Problems with Exact Nonreflecting Boundary Conditions

This paper is concerned with fast and accurate computation of exterior wave equations truncated via exact circular or spherical nonreflecting boundary conditions (NRBCs, which are known to be nonlocal in both time and space). We first derive analytic expressions for the underlying convolution kernels, which allow for a rapid and accurate evaluation of the convolution with O(Nt) operations over ...

متن کامل

Lagrangian Meshfree Particle-based Computational Acoustics for Two- dimensional Sound Propagation and Scattering Problems

Meshfree particle method, which is always regarded as a pure Lagrangian approach, is easily represented complicated domain topologies, moving boundaries, and multiphase media. Solving acoustic problems with the mesfree particle method forms a branch of the acoustic wave modeling field, namely, particle-based computational acoustics (PCA). The aim of this paper is to improve the accuracy of usin...

متن کامل

A fast multipole boundary element method for 3D multi-domain acoustic scattering problems based on the Burton–Miller formulation

A fast multipole boundary element method (FMBEM) for 3D multi-domain acoustic scattering problems based on the Burton–Miller formulation is presented in this paper. A multi-tree structure is designed for the multi-domain FMBEM. It results in mismatch of leaves and well separate cells definition in different domains and complicates the implementation of the algorithm, especially for precondition...

متن کامل

Fast and Accurate Computation of Exact Nonreflecting Boundary Condition for Maxwell’s Equations

We report in this paper a fast and accurate algorithm for computing the exact spherical nonreflecting boundary condition (NRBC) for time-dependent Maxwell’s equations. It is essentially based on a new formulation of the NRBC, which allows for the use of an analytic method for computing the involved inverse Laplace transform. This tool can be generically integrated with the interior solvers for ...

متن کامل

Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms

The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012